
django-dbbackup Documentation
Release 4.0.2

Michael Shepanski

Dec 12, 2022

Contents

1 Installation 3

2 Configuration 5

3 Database settings 9

4 Storage settings 15

5 Commands 21

6 Integration tutorials 25

7 Upgrade from 2.5.x 27

8 Contributing guide 31

9 Changelog 35

10 Compatibility 37

11 Other Resources 39

12 Indices and tables 41

i

ii

django-dbbackup Documentation, Release 4.0.2

This Django application provides management commands to help backup and restore your project database and media
files with various storages such as Amazon S3, DropBox or local file system.

It is made to:

• Allow you to secure your backup with GPG signature and encryption

• Archive with compression

• Deal easily with remote archiving

• Keep your development database up to date

• Use Crontab or Celery to setup automated backups

Warning: Django DBBackup version 3 is very different to its predecessors. See Upgrade documentation to help
to get up to date.

Contents:

Contents 1

upgrade.html

django-dbbackup Documentation, Release 4.0.2

2 Contents

CHAPTER 1

Installation

1.1 Installing on your system

1.1.1 Getting the latest stable release

pip install django-dbbackup

1.1.2 Getting the latest release from trunk

In general, you should not be downloading and installing stuff directly from repositories – especially not if you are
backing up sensitive data.

Security is important, bypassing PyPi repositories is a bad habit, because it will bypass the fragile key signatures
authentication that are at least present when using PyPi repositories.

pip install -e git+https://github.com/mjs7231/django-dbbackup.git#egg=django-dbbackup

1.2 Add it in your project

In your settings.py, make sure you have the following things:

INSTALLED_APPS = (
...
'dbbackup', # django-dbbackup

)

DBBACKUP_STORAGE = 'django.core.files.storage.FileSystemStorage'
DBBACKUP_STORAGE_OPTIONS = {'location': '/my/backup/dir/'}

Create the backup directory:

3

django-dbbackup Documentation, Release 4.0.2

mkdir /my/backup/dir/

Note: This configuration uses filesystem storage, but you can use any storage supported by Django API. See Storage
settings for more information about it.

1.3 Testing that everything worked

Now, you should be able to create your first backup by running:

$ python manage.py dbbackup

If your database was called default which is the normal Django behaviour of a single-database project, you should
now see a new file in your backup directory.

4 Chapter 1. Installation

storage.html
storage.html

CHAPTER 2

Configuration

2.1 General settings

2.1.1 DBBACKUP_DATABASES

List of key entries for settings.DATABASES which shall be used to connect and create database backups.

Default: list(settings.DATABASES.keys()) (keys of all entries listed)

2.1.2 DBBACKUP_TMP_DIR

Directory to be used in local filesystem for temporary files.

Default: tempfile.gettempdir()

2.1.3 DBBACKUP_TMP_FILE_MAX_SIZE

Maximum size in bytes for file handling in memory before a temporary file is written in DBBACKUP_TMP_DIR.

Default: 10*1024*1024

2.1.4 DBBACKUP_CLEANUP_KEEP and DBBACKUP_CLEANUP_KEEP_MEDIA

When issuing dbbackup and mediabackup with --clean option, the number of old backup files that are looked
for and removed.

Default: 10 (backups)

5

django-dbbackup Documentation, Release 4.0.2

2.1.5 DBBACKUP_CLEANUP_FILTER

A callable that takes a filename (of an old backup, to be cleaned) and returns a boolean indicating whether the backup
should be kept (True) or deleted (False).

Default: lambda filename: False

This can be used to keep monthly backups, for example.

2.1.6 DBBACKUP_DATE_FORMAT

Date format to use for naming files. It must contain only alphanumerical characters, '_', '-' or '%'.

Default: '%Y-%m-%d-%H%M%S'

2.1.7 DBBACKUP_HOSTNAME

Used to identify a backup by a server name in the file name.

Default: socket.gethostname()

2.1.8 DBBACKUP_FILENAME_TEMPLATE

The template to use when generating the backup filename. By default this is
'{databasename}-{servername}-{datetime}.{extension}'. This setting can also be made a
function which takes the following keyword arguments:

def backup_filename(databasename, servername, datetime, extension, content_type):
pass

DBBACKUP_FILENAME_TEMPLATE = backup_filename

This allows you to modify the entire format of the filename, for example, if you want to take advantage of Amazon
S3’s automatic expiry feature, you need to prefix your backups differently based on when you want them to expire.

{datetime} is rendered with DBBACKUP_DATE_FORMAT.

2.1.9 DBBACKUP_MEDIA_FILENAME_TEMPLATE

Same as DBBACKUP_FILENAME_TEMPLATE but for media files backups.

2.2 Encrypting your backups

Considering that you might be putting secure data on external servers and perhaps untrusted servers where it gets
forgotten over time, it’s always a good idea to encrypt backups.

Just remember to keep the encryption keys safe, too!

6 Chapter 2. Configuration

django-dbbackup Documentation, Release 4.0.2

2.2.1 PGP

You can encrypt a backup with the --encrypt option. The backup is done using GPG.

python manage.py dbbackup --encrypt

. . . or when restoring from an encrypted backup:

python manage.py dbrestore --decrypt

Requirements:

• Install the python package python-gnupg: pip install python-gnupg>=0.5.0.

• You need a GPG key. (GPG manual)

• Set the setting DBBACKUP_GPG_RECIPIENT to the name of the GPG key.

2.2.2 DBBACKUP_GPG_ALWAYS_TRUST

The encryption of the backup file fails if GPG does not trust the public encryption key. The solution is to set the option
‘trust-model’ to ‘always’. By default this value is False. Set this to True to enable this option.

2.2.3 DBBACKUP_GPG_RECIPIENT

The name of the key that is used for encryption. This setting is only used when making a backup with the --encrypt
or --decrypt option.

2.3 Email configuration

2.3.1 DBBACKUP_SEND_EMAIL

Controls whether or not django-dbbackup sends an error email when an uncaught exception is received.

Default: True

2.3.2 DBBACKUP_SERVER_EMAIL

The email address that error messages come from, such as those sent to DBBACKUP_ADMINS.

Default: django.conf.settings.SERVER_EMAIL

2.3.3 DBBACKUP_ADMINS

A list of all the people who get code error notifications. When DEBUG=False and an operation raises an exception,
DBBackup will email these people with the full exception information. This should be a tuple of (Full name, email
address).

Default: django.conf.settings.ADMINS

2.3. Email configuration 7

https://www.gnupg.org/gph/en/manual/c14.html

django-dbbackup Documentation, Release 4.0.2

Warning: DBBACKUP_FAILURE_RECIPIENTS was used before and is now deprecated

2.3.4 DBBACKUP_EMAIL_SUBJECT_PREFIX

Subject-line prefix for email messages sent by DBBackup.

Default: '[dbbackup] '

2.4 Database configuration

By default, DBBackup uses parameters from settings.DATABASES but you can make an independent configura-
tion, see Database settings

2.5 Storage configuration

You have to use a storage for your backups, see Storage settings for more.

8 Chapter 2. Configuration

databases.html
storage.html

CHAPTER 3

Database settings

The following databases are supported by this application:

• SQLite

• MySQL

• PostgreSQL

• MongoDB

• . . . and any other that you might implement

By default, DBBackup will try to use your database settings in DATABASES to handle the database, but some
databases require custom options so you might want to use different parameters for backups. That’s why we included
a DBBACKUP_CONNECTORS setting; it follows the form of the django DATABASES setting:

DBBACKUP_CONNECTORS = {
'default': {

'USER': 'backupuser',
'PASSWORD': 'backuppassword',
'HOST': 'replica-for-backup'

}
}

This configuration will allow you to use a replica with a different host and user, which is a great practice if you don’t
want to overload your main database.

DBBackup uses Connectors for creating and restoring backups; below you’ll see specific parameters for the built-in
ones.

3.1 Common

All connectors have the following parameters:

9

django-dbbackup Documentation, Release 4.0.2

3.1.1 CONNECTOR

Absolute path to a connector class by default is:

• dbbackup.db.sqlite.SqliteConnector for 'django.db.backends.sqlite3'

• dbbackup.db.mysql.MysqlDumpConnector for django.db.backends.mysql

• dbbackup.db.postgresql.PgDumpConnector for django.db.backends.postgresql

• dbbackup.db.postgresql.PgDumpGisConnector for django.contrib.gis.db.
backends.postgis

• dbbackup.db.mongodb.MongoDumpConnector for django_mongodb_engine

All supported built-in connectors are described in more detail below.

Following database wrappers from django-prometheus module are supported:

• django_prometheus.db.backends.postgresql for dbbackup.db.postgresql.
PgDumpBinaryConnector

• django_prometheus.db.backends.sqlite3 for dbbackup.db.sqlite.SqliteConnector

• django_prometheus.db.backends.mysql for dbbackup.db.mysql.MysqlDumpConnector

• django_prometheus.db.backends.postgis for dbbackup.db.postgresql.
PgDumpGisConnector

3.1.2 EXCLUDE

Tables to exclude from backup as list. This option may be unavailable for connectors when making snapshots.

3.1.3 EXTENSION

Extension of backup file name, default 'dump'.

3.2 Command connectors

Some connectors use a command line tool as a dump engine, mysqldump for example. These kinds of tools have
common attributes:

3.2.1 DUMP_CMD

Path to the command used to create a backup; default is the appropriate command supposed to be in your PATH, for
example: 'mysqldump' for MySQL.

This setting is useful only for connectors using command line tools (children of dbbackup.db.base.
BaseCommandDBConnector)

3.2.2 RESTORE_CMD

Same as DUMP_CMD but used when restoring.

10 Chapter 3. Database settings

django-dbbackup Documentation, Release 4.0.2

3.2.3 DUMP_PREFIX and RESTORE_PREFIX

String to include as prefix of dump or restore command. It will be added with a space between the launched command
and its prefix.

3.2.4 DUMP_SUFFIX and RESTORE_SUFFIX

String to include as suffix of dump or restore command. It will be added with a space between the launched command
and its suffix.

3.2.5 ENV, DUMP_ENV and RESTORE_ENV

Environment variables used during command running, default are {}. ENV is used for every command, DUMP_ENV
and RESTORE_ENV override the values defined in ENV during the dedicated commands.

3.2.6 USE_PARENT_ENV

Specify if the connector will use its parent’s environment variables. By default it is True to keep PATH.

3.3 SQLite

SQLite uses by default dbbackup.db.sqlite.SqliteConnector.

3.3.1 SqliteConnector

It is in pure Python and copies the behavior of .dump command for creating a SQL dump.

3.3.2 SqliteCPConnector

You can also use dbbackup.db.sqlite.SqliteCPConnector for making a simple raw copy of your database
file, like a snapshot.

In-memory database aren’t dumpable with it.

3.4 MySQL

MySQL uses by default dbbackup.db.mysql.MysqlDumpConnector. It uses mysqldump and mysql for
its job.

3.5 PostgreSQL

Postgres uses by default dbbackup.db.postgresql.PgDumpConnector, but we advise you to use
dbbackup.db.postgresql.PgDumpBinaryConnector. The first one uses pg_dump and pqsl for its
job, creating RAW SQL files.

The second uses pg_restore with binary dump files.

3.3. SQLite 11

django-dbbackup Documentation, Release 4.0.2

They can also use psql for launching administration command.

3.5.1 SINGLE_TRANSACTION

When doing a restore, wrap everything in a single transaction, so errors cause a rollback.

This corresponds to --single-transaction argument of psql and pg_restore.

Default: True

3.5.2 DROP

With PgDumpConnector, it includes tables dropping statements in dump file. PgDumpBinaryConnector drops
at restoring.

This corresponds to --clean argument of pg_dump and pg_restore.

Default: True

3.6 PostGIS

Set in dbbackup.db.postgresql.PgDumpGisConnector, it does the same as PostgreSQL but launches
CREATE EXTENSION IF NOT EXISTS postgis; before restore database.

3.6.1 PSQL_CMD

Path to psql command used for administration tasks like enable PostGIS for example, default is psql.

3.6.2 PASSWORD

If you fill this settings PGPASSWORD environment variable will be used with every commands. For security reason,
we advise to use .pgpass file.

3.6.3 ADMIN_USER

Username used for launch action with privileges, extension creation for example.

3.6.4 ADMIN_PASSWORD

Password used for launch action with privileges, extension creation for example.

3.7 MongoDB

MongoDB uses by default dbbackup.db.mongodb.MongoDumpConnector. it uses mongodump and
mongorestore for its job.

For AuthEnabled MongoDB Connection, you need to add one custom option AUTH_SOURCE in your
DBBACKUP_CONNECTORS.

12 Chapter 3. Database settings

django-dbbackup Documentation, Release 4.0.2

DBBACKUP_CONNECTORS = {
'default': {

...
'AUTH_SOURCE': 'admin',

}
}

Or in DATABASES one:

DATABASES = {
'default': {

...
'AUTH_SOURCE': 'admin',

}
}

3.7.1 OBJECT_CHECK

Validate documents before inserting in database (option --objcheck in command line), default is True.

3.7.2 DROP

Replace objects that are already in database, (option --drop in command line), default is True.

3.8 Custom connector

Creating your connector is easy; create a children class from dbbackup.db.base.BaseDBConnector and
create _create_dump and _restore_dump. If your connector uses a command line tool, inherit it from
dbbackup.db.base.BaseCommandDBConnector

3.9 Connecting a Custom connector

Here is an example, on how to easily connect a custom connector that you have created or even that you simply want
to reuse:

DBBACKUP_CONNECTOR_MAPPING = {
'transaction_hooks.backends.postgis': 'dbbackup.db.postgresql.PgDumpGisConnector',

}

Obviously instead of dbbackup.db.postgresql.PgDumpGisConnector you can use the custom connector
you have created yourself and transaction_hooks.backends.postgis is simply the database engine name
you are using.

3.8. Custom connector 13

django-dbbackup Documentation, Release 4.0.2

14 Chapter 3. Database settings

CHAPTER 4

Storage settings

One of the most helpful features of django-dbbackup is the ability to store and retrieve backups from a local or a
remote storage. This functionality is mainly based on Django Storage API and extends its possibilities.

You can choose your backup storage backend by setting settings.DBBACKUP_STORAGE, it must be the full path
of a storage class. For example: django.core.files.storage.FileSystemStorage to use file system
storage. Below, we’ll list some of the available solutions and their options.

The storage’s option are gathered in settings.DBBACKUP_STORAGE_OPTIONS which is a dictionary of key-
words representing how to configure it.

Warning: Do not configure backup storage with the same configuration as your media files as you’ll risk sharing
backups inside public directories.

By default DBBackup uses the built-in file system storage to manage files on a local directory. Feel free to use any
Django storage, you can find a variety of them at Django Packages.

Note: Storing backups to local disk may also be useful for Dropbox if you already have the official Dropbox client
installed on your system.

4.1 File system storage

4.1.1 Setup

To store your backups on the local file system, simply setup the required settings below.

DBBACKUP_STORAGE = 'django.core.files.storage.FileSystemStorage'
DBBACKUP_STORAGE_OPTIONS = {'location': '/my/backup/dir/'}

15

https://docs.djangoproject.com/en/stable/ref/files/storage/#the-filesystemstorage-class
https://djangopackages.org/grids/g/storage-backends/

django-dbbackup Documentation, Release 4.0.2

4.1.2 Available settings

location

Absolute path to the directory that will hold the files.

file_permissions_mode

The file system permissions that the file will receive when it is saved.

directory_permissions_mode

The file system permissions that the directory will receive when it is saved.

See FileSystemStorage’s documentation for a full list of available settings.

4.2 Google cloud storage

Our backend for Google cloud storage uses django-storages.

4.2.1 Setup

In order to backup to Google cloud storage, you’ll first need to create an account at google. Once that is complete, you
can follow the required setup below.

pip install django-storages[google]

Add the following to your project’s settings. Strictly speaking only bucket_name is required, but we’d recommend to
add the other two as well. You can also find more settings in the readme for django-storages

DBBACKUP_STORAGE = 'storages.backends.gcloud.GoogleCloudStorage'
DBBACKUP_STORAGE_OPTIONS = {

"bucket_name": "your_bucket_name",
"project_id": "your_project_id",
"blob_chunk_size": 1024 * 1024

}

4.3 Amazon S3

Our S3 backend uses Django Storages which uses boto3.

4.3.1 Setup

In order to backup to Amazon S3, you’ll first need to create an Amazon Webservices Account and setup your Amazon
S3 bucket. Once that is complete, you can follow the required setup below.

pip install django-storages[boto3]

Add the following to your project’s settings:

16 Chapter 4. Storage settings

https://docs.djangoproject.com/en/stable/ref/files/storage/#the-filesystemstorage-class
https://django-storages.readthedocs.io/en/latest/backends/gcloud.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html

django-dbbackup Documentation, Release 4.0.2

DBBACKUP_STORAGE = 'storages.backends.s3boto3.S3Boto3Storage'
DBBACKUP_STORAGE_OPTIONS = {

'access_key': 'my_id',
'secret_key': 'my_secret',
'bucket_name': 'my_bucket_name',
'default_acl': 'private',

}

4.3.2 Available settings

Note: See the Django Storage S3 storage official documentation for all options.

The options listed here are a selection of dictionary keys returned by get_default_settings in django-storages’
storages/backends/s3boto3.py, which allows us to write nicer code compared to using the AWS_ prefixed settings.

access_key - Required

Your AWS access key as string. This can be found on your Amazon Account Security Credentials page.

secret_key - Required

Your Amazon Web Services secret access key, as a string.

bucket_name - Required

Your Amazon Web Services storage bucket name, as a string. This directory must exist before attempting to create
your first backup.

region_name - Optional

Specify the Amazon region, e.g. 'us-east-1'

endpoint_url - Optional

Set this to fully override the endpoint, e.g. to use an alternative S3 service, which is compatible with AWS S3. The
value must contain the protocol, e.g. 'https://compatible-s3-service.example.com'.

default_acl - Required

This setting can either be 'private' or 'public'. Since you want your backups to be secure you’ll want to set
'default_acl' to 'private'.

NOTE: This value will be removed in a future version of django-storages. See their CHANGELOG for details.

location - Optional

If you want to store your backups inside a particular folder in your bucket you need to specify the 'location'.
The folder can be specified as 'folder_name/'. You can specify a longer path with 'location':
'root_folder/sub_folder/sub_sub_folder/'.

4.4 Dropbox

In order to backup to Dropbox, you’ll first need to create a Dropbox account and set it up to communicate with the
Django-DBBackup application. Don’t worry, all instructions are below.

4.4. Dropbox 17

https://django-storages.readthedocs.io/en/latest/backends/amazon-S3.html
https://github.com/jschneier/django-storages/blob/master/storages/backends/s3boto3.py#L293-L324
https://console.aws.amazon.com/iam/home#security_credential
https://github.com/jschneier/django-storages/blob/master/CHANGELOG.rst

django-dbbackup Documentation, Release 4.0.2

4.4.1 Setup your Dropbox account

1. Login to Dropbox and navigate to Developers » MyApps. https://www.dropbox.com/developers/apps

2. Click the button to create a new app and name it whatever you like. As an example, I named mine ‘Website
Backups’.

3. After your app is created, note the options button and more importantly the ‘App Key’ and ‘App Secret’ values
inside. You’ll need those later.

4.4.2 Setup your Django project

pip install dropbox django-storages

. . . And make sure you have the following required settings:

DBBACKUP_STORAGE = 'storages.backends.dropbox.DropBoxStorage'
DBBACKUP_STORAGE_OPTIONS = {

'oauth2_access_token': 'my_token',
}

4.4.3 Available settings

Note: See django-storages dropbox official documentation for more details.

oauth2_access_token - Required

Your OAuth access token

root_path

Jail storage to this directory

4.5 FTP

To store your database backups on a remote filesystem via [a]FTP, simply setup the required settings below.

4.5.1 Setup

pip install django-storages

Warning: This storage doesn’t use a private connection for communication so don’t use it if you’re not certain
about the security of the link between the client and the server.

DBBACKUP_STORAGE = 'storages.backends.ftp.FTPStorage
DBBACKUP_STORAGE_OPTIONS = {

'location': 'ftp://user:pass@server:21'
}

18 Chapter 4. Storage settings

https://www.dropbox.com/developers/apps
https://django-storages.readthedocs.io/en/latest/backends/dropbox.html

django-dbbackup Documentation, Release 4.0.2

4.5.2 Settings

location - Required

A FTP URI with optional user, password and port. example: 'ftp://anonymous@myftp.net'

4.5.3 Setup

We use FTP backend from Django-Storages (again).

pip install django-storages

Here a simple configuration:

DBBACKUP_STORAGE = 'storages.backends.ftp.FTPStorage'
DBBACKUP_STORAGE_OPTIONS = {'location': ftp://myftpserver/}

4.6 SFTP

To store your database backups on a remote filesystem via SFTP, simply setup the required settings below.

4.6.1 Setup

This backend is from Django-Storages with the paramiko backend.

pip install paramiko django-storages

The following configuration grants SSH server access to the local user:

DBBACKUP_STORAGE = 'storages.backends.sftpstorage.SFTPStorage'
DBBACKUP_STORAGE_OPTIONS = {'host': 'myserver'}

4.6.2 Available settings

host - Required

Hostname or address of the SSH server

root_path - Default ~/

Jail storage to this directory

params - Default {}

Argument used by method:paramikor.SSHClient.connect(). See paramiko SSHClient.connect() documentation for
details.

interactive - Default False

A boolean indicating whether to prompt for a password if the connection cannot be made using keys, and there is not
already a password in params.

file_mode

UID of the account that should be set as owner of the files on the remote.

4.6. SFTP 19

https://www.paramiko.org/
https://docs.paramiko.org/en/latest/api/client.html#paramiko.client.SSHClient.connect

django-dbbackup Documentation, Release 4.0.2

dir_mode

GID of the group that should be set on the files on the remote host.

known_host_file

Absolute path of known_hosts file, if it isn’t set "~/.ssh/known_hosts" will be used.

20 Chapter 4. Storage settings

CHAPTER 5

Commands

The primary usage of DBBackup is with command line tools. By default, commands will create backups and upload
to your defined storage or download and restore the latest backup.

Arguments can be passed to commands to compress/uncompress and encrypt/decrypt.

5.1 dbbackup

Backup of database.

$./manage.py dbbackup
Backing Up Database: /tmp/tmp.x0kN9sYSqk
Backup size: 3.3 KiB
Writing file to tmp-zuluvm-2016-07-29-100954.dump

5.1.1 Help

usage: manage.py dbbackup [-h] [–noinput] [-q] [-c] [-d DATABASE] [-s SERVERNAME] [-z] [-e] [-
o OUTPUT𝐹 𝐼𝐿𝐸𝑁𝐴𝑀𝐸][−𝑂𝑂𝑈𝑇𝑃𝑈𝑇𝑃𝐴𝑇𝐻][−𝑥𝐸𝑋𝐶𝐿𝑈𝐷𝐸𝑇𝐴𝐵𝐿𝐸𝑆][− − 𝑣𝑒𝑟𝑠𝑖𝑜𝑛][−𝑣0, 1, 2, 3][− −
𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠𝑆𝐸𝑇𝑇𝐼𝑁𝐺𝑆][−−𝑝𝑦𝑡ℎ𝑜𝑛𝑝𝑎𝑡ℎ𝑃𝑌 𝑇𝐻𝑂𝑁𝑃𝐴𝑇𝐻][−−𝑡𝑟𝑎𝑐𝑒𝑏𝑎𝑐𝑘][−−𝑛𝑜−𝑐𝑜𝑙𝑜𝑟][−−𝑓𝑜𝑟𝑐𝑒−𝑐𝑜𝑙𝑜𝑟][−−
𝑠𝑘𝑖𝑝− 𝑐ℎ𝑒𝑐𝑘𝑠]

Backup a database, encrypt and/or compress and write to storage.

optional arguments: -h, –help show this help message and exit –noinput Tells Django to NOT prompt the
user for input of any kind. -q, –quiet Tells Django to NOT output other text than errors. -c, –clean Clean
up old backup files -d DATABASE, –database DATABASE Database(s) to backup specified by key sepa-
rated by commas(default: all) -s SERVERNAME, –servername SERVERNAME Specify server name to in-
clude in backup filename -z, –compress Compress the backup files -e, –encrypt Encrypt the backup files -o
OUTPUT𝐹 𝐼𝐿𝐸𝑁𝐴𝑀𝐸,− − 𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒𝑂𝑈𝑇𝑃𝑈𝑇𝐹 𝐼𝐿𝐸𝑁𝐴𝑀𝐸𝑆𝑝𝑒𝑐𝑖𝑓𝑦𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒𝑜𝑛𝑠𝑡𝑜𝑟𝑎𝑔𝑒 −
𝑂𝑂𝑈𝑇𝑃𝑈𝑇𝑃𝐴𝑇𝐻,− − 𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑝𝑎𝑡ℎ𝑂𝑈𝑇𝑃𝑈𝑇𝑃𝐴𝑇𝐻𝑆𝑝𝑒𝑐𝑖𝑓𝑦𝑤ℎ𝑒𝑟𝑒𝑡𝑜𝑠𝑡𝑜𝑟𝑒𝑜𝑛𝑙𝑜𝑐𝑎𝑙𝑓𝑖𝑙𝑒𝑠𝑦𝑠𝑡𝑒𝑚 −
𝑥𝐸𝑋𝐶𝐿𝑈𝐷𝐸𝑇𝐴𝐵𝐿𝐸𝑆,− − 𝑒𝑥𝑐𝑙𝑢𝑑𝑒 − 𝑡𝑎𝑏𝑙𝑒𝑠𝐸𝑋𝐶𝐿𝑈𝐷𝐸𝑇𝐴𝐵𝐿𝐸𝑆𝐸𝑥𝑐𝑙𝑢𝑑𝑒𝑡𝑎𝑏𝑙𝑒𝑠𝑓𝑟𝑜𝑚𝑏𝑎𝑐𝑘𝑢𝑝 −

21

django-dbbackup Documentation, Release 4.0.2

−𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠ℎ𝑜𝑤𝑝𝑟𝑜𝑔𝑟𝑎𝑚′𝑠𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑛𝑢𝑚𝑏𝑒𝑟𝑎𝑛𝑑𝑒𝑥𝑖𝑡 − 𝑣0, 1, 2, 3,− − 𝑣𝑒𝑟𝑏𝑜𝑠𝑖𝑡𝑦0, 1, 2, 3𝑉 𝑒𝑟𝑏𝑜𝑠𝑖𝑡𝑦𝑙𝑒𝑣𝑒𝑙; 0 =
𝑚𝑖𝑛𝑖𝑚𝑎𝑙𝑜𝑢𝑡𝑝𝑢𝑡, 1 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑜𝑢𝑡𝑝𝑢𝑡, 2 = 𝑣𝑒𝑟𝑏𝑜𝑠𝑒𝑜𝑢𝑡𝑝𝑢𝑡, 3 = 𝑣𝑒𝑟𝑦𝑣𝑒𝑟𝑏𝑜𝑠𝑒𝑜𝑢𝑡𝑝𝑢𝑡 −
−𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠𝑆𝐸𝑇𝑇𝐼𝑁𝐺𝑆𝑇ℎ𝑒𝑃𝑦𝑡ℎ𝑜𝑛𝑝𝑎𝑡ℎ𝑡𝑜𝑎𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠𝑚𝑜𝑑𝑢𝑙𝑒, 𝑒.𝑔.”𝑚𝑦𝑝𝑟𝑜𝑗𝑒𝑐𝑡.𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠.𝑚𝑎𝑖𝑛”.𝐼𝑓𝑡ℎ𝑖𝑠𝑖𝑠𝑛′𝑡𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑, 𝑡ℎ𝑒𝐷𝐽𝐴𝑁𝐺𝑂𝑆𝐸𝑇𝑇𝐼𝑁𝐺𝑆𝑀𝑂𝐷𝑈𝐿𝐸𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑤𝑖𝑙𝑙𝑏𝑒𝑢𝑠𝑒𝑑.−
−𝑝𝑦𝑡ℎ𝑜𝑛𝑝𝑎𝑡ℎ𝑃𝑌 𝑇𝐻𝑂𝑁𝑃𝐴𝑇𝐻𝐴𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦𝑡𝑜𝑎𝑑𝑑𝑡𝑜𝑡ℎ𝑒𝑃𝑦𝑡ℎ𝑜𝑛𝑝𝑎𝑡ℎ, 𝑒.𝑔.”/ℎ𝑜𝑚𝑒/𝑑𝑗𝑎𝑛𝑔𝑜𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠/𝑚𝑦𝑝𝑟𝑜𝑗𝑒𝑐𝑡”.−
−𝑡𝑟𝑎𝑐𝑒𝑏𝑎𝑐𝑘𝑅𝑎𝑖𝑠𝑒𝑜𝑛𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝐸𝑟𝑟𝑜𝑟𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑠−−𝑛𝑜−𝑐𝑜𝑙𝑜𝑟𝐷𝑜𝑛′𝑡𝑐𝑜𝑙𝑜𝑟𝑖𝑧𝑒𝑡ℎ𝑒𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑜𝑢𝑡𝑝𝑢𝑡.−−𝑓𝑜𝑟𝑐𝑒−
𝑐𝑜𝑙𝑜𝑟𝐹𝑜𝑟𝑐𝑒𝑐𝑜𝑙𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑜𝑓𝑡ℎ𝑒𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑜𝑢𝑡𝑝𝑢𝑡.−−𝑠𝑘𝑖𝑝− 𝑐ℎ𝑒𝑐𝑘𝑠𝑆𝑘𝑖𝑝𝑠𝑦𝑠𝑡𝑒𝑚𝑐ℎ𝑒𝑐𝑘𝑠.

5.2 dbrestore

Restore a database. :: $./manage.py dbrestore Restoring backup for database: /tmp/tmp.x0kN9sYSqk Finding latest
backup Restoring: tmp-zuluvm-2016-07-29-100954.dump Restore tempfile created: 3.3 KiB

5.2.1 Help

usage: manage.py dbrestore [-h] [–noinput] [-q] [-d DATABASE] [-i INPUT𝐹 𝐼𝐿𝐸𝑁𝐴𝑀𝐸][−𝐼𝐼𝑁𝑃𝑈𝑇𝑃𝐴𝑇𝐻][−𝑠𝑆𝐸𝑅𝑉 𝐸𝑅𝑁𝐴𝑀𝐸][−𝑐][−𝑝𝑃𝐴𝑆𝑆𝑃𝐻𝑅𝐴𝑆𝐸][−𝑧][−−
𝑣𝑒𝑟𝑠𝑖𝑜𝑛][−𝑣0, 1, 2, 3][−− 𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠𝑆𝐸𝑇𝑇𝐼𝑁𝐺𝑆][−− 𝑝𝑦𝑡ℎ𝑜𝑛𝑝𝑎𝑡ℎ𝑃𝑌 𝑇𝐻𝑂𝑁𝑃𝐴𝑇𝐻][−− 𝑡𝑟𝑎𝑐𝑒𝑏𝑎𝑐𝑘][−−𝑛𝑜−
𝑐𝑜𝑙𝑜𝑟][−− 𝑓𝑜𝑟𝑐𝑒− 𝑐𝑜𝑙𝑜𝑟][−− 𝑠𝑘𝑖𝑝− 𝑐ℎ𝑒𝑐𝑘𝑠]

Restore a database backup from storage, encrypted and/or compressed.

optional arguments: -h, –help show this help message and exit –noinput Tells Django to NOT
prompt the user for input of any kind. -q, –quiet Tells Django to NOT output other text than er-
rors. -d DATABASE, –database DATABASE Database to restore -i INPUT𝐹 𝐼𝐿𝐸𝑁𝐴𝑀𝐸,− −
𝑖𝑛𝑝𝑢𝑡 − 𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒𝐼𝑁𝑃𝑈𝑇𝐹 𝐼𝐿𝐸𝑁𝐴𝑀𝐸𝑆𝑝𝑒𝑐𝑖𝑓𝑦𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒𝑡𝑜𝑏𝑎𝑐𝑘𝑢𝑝𝑓𝑟𝑜𝑚 − 𝐼𝐼𝑁𝑃𝑈𝑇𝑃𝐴𝑇𝐻,− −
𝑖𝑛𝑝𝑢𝑡 − 𝑝𝑎𝑡ℎ𝐼𝑁𝑃𝑈𝑇𝑃𝐴𝑇𝐻𝑆𝑝𝑒𝑐𝑖𝑓𝑦𝑝𝑎𝑡ℎ𝑜𝑛𝑙𝑜𝑐𝑎𝑙𝑓𝑖𝑙𝑒𝑠𝑦𝑠𝑡𝑒𝑚𝑡𝑜𝑏𝑎𝑐𝑘𝑢𝑝𝑓𝑟𝑜𝑚 − 𝑠𝑆𝐸𝑅𝑉 𝐸𝑅𝑁𝐴𝑀𝐸,− −
𝑠𝑒𝑟𝑣𝑒𝑟𝑛𝑎𝑚𝑒𝑆𝐸𝑅𝑉 𝐸𝑅𝑁𝐴𝑀𝐸𝐼𝑓𝑏𝑎𝑐𝑘𝑢𝑝𝑓𝑖𝑙𝑒𝑖𝑠𝑛𝑜𝑡𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑, 𝑓𝑖𝑙𝑡𝑒𝑟𝑡ℎ𝑒𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑜𝑛𝑒𝑠𝑤𝑖𝑡ℎ𝑡ℎ𝑒𝑔𝑖𝑣𝑒𝑛𝑠𝑒𝑟𝑣𝑒𝑟𝑛𝑎𝑚𝑒−
𝑐,−−𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑑𝑎𝑡𝑎𝑏𝑒𝑓𝑜𝑟𝑒𝑟𝑒𝑠𝑡𝑜𝑟𝑖𝑛𝑔−𝑝𝑃𝐴𝑆𝑆𝑃𝐻𝑅𝐴𝑆𝐸,−−𝑝𝑎𝑠𝑠𝑝ℎ𝑟𝑎𝑠𝑒𝑃𝐴𝑆𝑆𝑃𝐻𝑅𝐴𝑆𝐸𝑃𝑎𝑠𝑠𝑝ℎ𝑟𝑎𝑠𝑒𝑓𝑜𝑟𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑓𝑖𝑙𝑒−
𝑧,−−𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑔𝑧𝑖𝑝𝑑𝑎𝑡𝑎𝑏𝑒𝑓𝑜𝑟𝑒𝑟𝑒𝑠𝑡𝑜𝑟𝑖𝑛𝑔−−𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠ℎ𝑜𝑤𝑝𝑟𝑜𝑔𝑟𝑎𝑚′𝑠𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑛𝑢𝑚𝑏𝑒𝑟𝑎𝑛𝑑𝑒𝑥𝑖𝑡−
𝑣0, 1, 2, 3,− − 𝑣𝑒𝑟𝑏𝑜𝑠𝑖𝑡𝑦0, 1, 2, 3𝑉 𝑒𝑟𝑏𝑜𝑠𝑖𝑡𝑦𝑙𝑒𝑣𝑒𝑙; 0 = 𝑚𝑖𝑛𝑖𝑚𝑎𝑙𝑜𝑢𝑡𝑝𝑢𝑡, 1 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑜𝑢𝑡𝑝𝑢𝑡, 2 =
𝑣𝑒𝑟𝑏𝑜𝑠𝑒𝑜𝑢𝑡𝑝𝑢𝑡, 3 = 𝑣𝑒𝑟𝑦𝑣𝑒𝑟𝑏𝑜𝑠𝑒𝑜𝑢𝑡𝑝𝑢𝑡−−𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠𝑆𝐸𝑇𝑇𝐼𝑁𝐺𝑆𝑇ℎ𝑒𝑃𝑦𝑡ℎ𝑜𝑛𝑝𝑎𝑡ℎ𝑡𝑜𝑎𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠𝑚𝑜𝑑𝑢𝑙𝑒, 𝑒.𝑔.”𝑚𝑦𝑝𝑟𝑜𝑗𝑒𝑐𝑡.𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠.𝑚𝑎𝑖𝑛”.𝐼𝑓𝑡ℎ𝑖𝑠𝑖𝑠𝑛′𝑡𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑, 𝑡ℎ𝑒𝐷𝐽𝐴𝑁𝐺𝑂𝑆𝐸𝑇𝑇𝐼𝑁𝐺𝑆𝑀𝑂𝐷𝑈𝐿𝐸𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑤𝑖𝑙𝑙𝑏𝑒𝑢𝑠𝑒𝑑.−
−𝑝𝑦𝑡ℎ𝑜𝑛𝑝𝑎𝑡ℎ𝑃𝑌 𝑇𝐻𝑂𝑁𝑃𝐴𝑇𝐻𝐴𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦𝑡𝑜𝑎𝑑𝑑𝑡𝑜𝑡ℎ𝑒𝑃𝑦𝑡ℎ𝑜𝑛𝑝𝑎𝑡ℎ, 𝑒.𝑔.”/ℎ𝑜𝑚𝑒/𝑑𝑗𝑎𝑛𝑔𝑜𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠/𝑚𝑦𝑝𝑟𝑜𝑗𝑒𝑐𝑡”.−
−𝑡𝑟𝑎𝑐𝑒𝑏𝑎𝑐𝑘𝑅𝑎𝑖𝑠𝑒𝑜𝑛𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝐸𝑟𝑟𝑜𝑟𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑠−−𝑛𝑜−𝑐𝑜𝑙𝑜𝑟𝐷𝑜𝑛′𝑡𝑐𝑜𝑙𝑜𝑟𝑖𝑧𝑒𝑡ℎ𝑒𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑜𝑢𝑡𝑝𝑢𝑡.−−𝑓𝑜𝑟𝑐𝑒−
𝑐𝑜𝑙𝑜𝑟𝐹𝑜𝑟𝑐𝑒𝑐𝑜𝑙𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑜𝑓𝑡ℎ𝑒𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑜𝑢𝑡𝑝𝑢𝑡.−−𝑠𝑘𝑖𝑝− 𝑐ℎ𝑒𝑐𝑘𝑠𝑆𝑘𝑖𝑝𝑠𝑦𝑠𝑡𝑒𝑚𝑐ℎ𝑒𝑐𝑘𝑠.

5.3 mediabackup

Backup media files, gather all in a tarball and encrypt or compress.

$./manage.py mediabackup
Backup size: 10.0 KiB
Writing file to zuluvm-2016-07-04-081612.tar

5.3.1 Help

usage: manage.py mediabackup [-h] [–noinput] [-q] [-c] [-s SERVERNAME] [-z] [-e] [-o
OUTPUT𝐹 𝐼𝐿𝐸𝑁𝐴𝑀𝐸][−𝑂𝑂𝑈𝑇𝑃𝑈𝑇𝑃𝐴𝑇𝐻][− − 𝑣𝑒𝑟𝑠𝑖𝑜𝑛][−𝑣0, 1, 2, 3][− − 𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠𝑆𝐸𝑇𝑇𝐼𝑁𝐺𝑆][− −
𝑝𝑦𝑡ℎ𝑜𝑛𝑝𝑎𝑡ℎ𝑃𝑌 𝑇𝐻𝑂𝑁𝑃𝐴𝑇𝐻][−− 𝑡𝑟𝑎𝑐𝑒𝑏𝑎𝑐𝑘][−− 𝑛𝑜− 𝑐𝑜𝑙𝑜𝑟][−− 𝑓𝑜𝑟𝑐𝑒− 𝑐𝑜𝑙𝑜𝑟][−− 𝑠𝑘𝑖𝑝− 𝑐ℎ𝑒𝑐𝑘𝑠]

Backup media files, gather all in a tarball and encrypt or compress.

22 Chapter 5. Commands

django-dbbackup Documentation, Release 4.0.2

optional arguments: -h, –help show this help message and exit –noinput Tells Django to NOT prompt the
user for input of any kind. -q, –quiet Tells Django to NOT output other text than errors. -c, –clean
Clean up old backup files -s SERVERNAME, –servername SERVERNAME Specify server name to in-
clude in backup filename -z, –compress Compress the archive -e, –encrypt Encrypt the backup files -o
OUTPUT𝐹 𝐼𝐿𝐸𝑁𝐴𝑀𝐸,− − 𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒𝑂𝑈𝑇𝑃𝑈𝑇𝐹 𝐼𝐿𝐸𝑁𝐴𝑀𝐸𝑆𝑝𝑒𝑐𝑖𝑓𝑦𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒𝑜𝑛𝑠𝑡𝑜𝑟𝑎𝑔𝑒 −
𝑂𝑂𝑈𝑇𝑃𝑈𝑇𝑃𝐴𝑇𝐻,− − 𝑜𝑢𝑡𝑝𝑢𝑡 − 𝑝𝑎𝑡ℎ𝑂𝑈𝑇𝑃𝑈𝑇𝑃𝐴𝑇𝐻𝑆𝑝𝑒𝑐𝑖𝑓𝑦𝑤ℎ𝑒𝑟𝑒𝑡𝑜𝑠𝑡𝑜𝑟𝑒𝑜𝑛𝑙𝑜𝑐𝑎𝑙𝑓𝑖𝑙𝑒𝑠𝑦𝑠𝑡𝑒𝑚 −
−𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠ℎ𝑜𝑤𝑝𝑟𝑜𝑔𝑟𝑎𝑚′𝑠𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑛𝑢𝑚𝑏𝑒𝑟𝑎𝑛𝑑𝑒𝑥𝑖𝑡 − 𝑣0, 1, 2, 3,− − 𝑣𝑒𝑟𝑏𝑜𝑠𝑖𝑡𝑦0, 1, 2, 3𝑉 𝑒𝑟𝑏𝑜𝑠𝑖𝑡𝑦𝑙𝑒𝑣𝑒𝑙; 0 =
𝑚𝑖𝑛𝑖𝑚𝑎𝑙𝑜𝑢𝑡𝑝𝑢𝑡, 1 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑜𝑢𝑡𝑝𝑢𝑡, 2 = 𝑣𝑒𝑟𝑏𝑜𝑠𝑒𝑜𝑢𝑡𝑝𝑢𝑡, 3 = 𝑣𝑒𝑟𝑦𝑣𝑒𝑟𝑏𝑜𝑠𝑒𝑜𝑢𝑡𝑝𝑢𝑡 −
−𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠𝑆𝐸𝑇𝑇𝐼𝑁𝐺𝑆𝑇ℎ𝑒𝑃𝑦𝑡ℎ𝑜𝑛𝑝𝑎𝑡ℎ𝑡𝑜𝑎𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠𝑚𝑜𝑑𝑢𝑙𝑒, 𝑒.𝑔.”𝑚𝑦𝑝𝑟𝑜𝑗𝑒𝑐𝑡.𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠.𝑚𝑎𝑖𝑛”.𝐼𝑓𝑡ℎ𝑖𝑠𝑖𝑠𝑛′𝑡𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑, 𝑡ℎ𝑒𝐷𝐽𝐴𝑁𝐺𝑂𝑆𝐸𝑇𝑇𝐼𝑁𝐺𝑆𝑀𝑂𝐷𝑈𝐿𝐸𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑤𝑖𝑙𝑙𝑏𝑒𝑢𝑠𝑒𝑑.−
−𝑝𝑦𝑡ℎ𝑜𝑛𝑝𝑎𝑡ℎ𝑃𝑌 𝑇𝐻𝑂𝑁𝑃𝐴𝑇𝐻𝐴𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦𝑡𝑜𝑎𝑑𝑑𝑡𝑜𝑡ℎ𝑒𝑃𝑦𝑡ℎ𝑜𝑛𝑝𝑎𝑡ℎ, 𝑒.𝑔.”/ℎ𝑜𝑚𝑒/𝑑𝑗𝑎𝑛𝑔𝑜𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠/𝑚𝑦𝑝𝑟𝑜𝑗𝑒𝑐𝑡”.−
−𝑡𝑟𝑎𝑐𝑒𝑏𝑎𝑐𝑘𝑅𝑎𝑖𝑠𝑒𝑜𝑛𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝐸𝑟𝑟𝑜𝑟𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑠−−𝑛𝑜−𝑐𝑜𝑙𝑜𝑟𝐷𝑜𝑛′𝑡𝑐𝑜𝑙𝑜𝑟𝑖𝑧𝑒𝑡ℎ𝑒𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑜𝑢𝑡𝑝𝑢𝑡.−−𝑓𝑜𝑟𝑐𝑒−
𝑐𝑜𝑙𝑜𝑟𝐹𝑜𝑟𝑐𝑒𝑐𝑜𝑙𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑜𝑓𝑡ℎ𝑒𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑜𝑢𝑡𝑝𝑢𝑡.−−𝑠𝑘𝑖𝑝− 𝑐ℎ𝑒𝑐𝑘𝑠𝑆𝑘𝑖𝑝𝑠𝑦𝑠𝑡𝑒𝑚𝑐ℎ𝑒𝑐𝑘𝑠.

5.4 mediarestore

Restore media files, extract files from archive and put into media storage.

$./manage.py mediarestore
Restoring backup for media files
Finding latest backup
Reading file zuluvm-2016-07-04-082551.tar
Restoring: zuluvm-2016-07-04-082551.tar
Backup size: 10.0 KiB
Are you sure you want to continue? [Y/n]
2 file(s) restored

5.4.1 Help

usage: manage.py mediarestore [-h] [–noinput] [-q] [-i INPUT𝐹 𝐼𝐿𝐸𝑁𝐴𝑀𝐸][−𝐼𝐼𝑁𝑃𝑈𝑇𝑃𝐴𝑇𝐻][−𝑠𝑆𝐸𝑅𝑉 𝐸𝑅𝑁𝐴𝑀𝐸][−𝑒][−𝑝𝑃𝐴𝑆𝑆𝑃𝐻𝑅𝐴𝑆𝐸][−𝑧][−𝑟][−−
𝑣𝑒𝑟𝑠𝑖𝑜𝑛][−𝑣0, 1, 2, 3][−− 𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠𝑆𝐸𝑇𝑇𝐼𝑁𝐺𝑆][−− 𝑝𝑦𝑡ℎ𝑜𝑛𝑝𝑎𝑡ℎ𝑃𝑌 𝑇𝐻𝑂𝑁𝑃𝐴𝑇𝐻][−− 𝑡𝑟𝑎𝑐𝑒𝑏𝑎𝑐𝑘][−−𝑛𝑜−
𝑐𝑜𝑙𝑜𝑟][−− 𝑓𝑜𝑟𝑐𝑒− 𝑐𝑜𝑙𝑜𝑟][−− 𝑠𝑘𝑖𝑝− 𝑐ℎ𝑒𝑐𝑘𝑠]

Restore a media backup from storage, encrypted and/or compressed.

optional arguments: -h, –help show this help message and exit –noinput Tells Django to NOT prompt the user for in-
put of any kind. -q, –quiet Tells Django to NOT output other text than errors. -i INPUT𝐹 𝐼𝐿𝐸𝑁𝐴𝑀𝐸,− −
𝑖𝑛𝑝𝑢𝑡 − 𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒𝐼𝑁𝑃𝑈𝑇𝐹 𝐼𝐿𝐸𝑁𝐴𝑀𝐸𝑆𝑝𝑒𝑐𝑖𝑓𝑦𝑓𝑖𝑙𝑒𝑛𝑎𝑚𝑒𝑡𝑜𝑏𝑎𝑐𝑘𝑢𝑝𝑓𝑟𝑜𝑚 − 𝐼𝐼𝑁𝑃𝑈𝑇𝑃𝐴𝑇𝐻,− −
𝑖𝑛𝑝𝑢𝑡 − 𝑝𝑎𝑡ℎ𝐼𝑁𝑃𝑈𝑇𝑃𝐴𝑇𝐻𝑆𝑝𝑒𝑐𝑖𝑓𝑦𝑝𝑎𝑡ℎ𝑜𝑛𝑙𝑜𝑐𝑎𝑙𝑓𝑖𝑙𝑒𝑠𝑦𝑠𝑡𝑒𝑚𝑡𝑜𝑏𝑎𝑐𝑘𝑢𝑝𝑓𝑟𝑜𝑚 − 𝑠𝑆𝐸𝑅𝑉 𝐸𝑅𝑁𝐴𝑀𝐸,− −
𝑠𝑒𝑟𝑣𝑒𝑟𝑛𝑎𝑚𝑒𝑆𝐸𝑅𝑉 𝐸𝑅𝑁𝐴𝑀𝐸𝐼𝑓𝑏𝑎𝑐𝑘𝑢𝑝𝑓𝑖𝑙𝑒𝑖𝑠𝑛𝑜𝑡𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑑, 𝑓𝑖𝑙𝑡𝑒𝑟𝑡ℎ𝑒𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑜𝑛𝑒𝑠𝑤𝑖𝑡ℎ𝑡ℎ𝑒𝑔𝑖𝑣𝑒𝑛𝑠𝑒𝑟𝑣𝑒𝑟𝑛𝑎𝑚𝑒−
𝑒,−−𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝐷𝑒𝑐𝑟𝑦𝑝𝑡𝑑𝑎𝑡𝑎𝑏𝑒𝑓𝑜𝑟𝑒𝑟𝑒𝑠𝑡𝑜𝑟𝑖𝑛𝑔−𝑝𝑃𝐴𝑆𝑆𝑃𝐻𝑅𝐴𝑆𝐸,−−𝑝𝑎𝑠𝑠𝑝ℎ𝑟𝑎𝑠𝑒𝑃𝐴𝑆𝑆𝑃𝐻𝑅𝐴𝑆𝐸𝑃𝑎𝑠𝑠𝑝ℎ𝑟𝑎𝑠𝑒𝑓𝑜𝑟𝑑𝑒𝑐𝑟𝑦𝑝𝑡𝑓𝑖𝑙𝑒−
𝑧,− − 𝑢𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑔𝑧𝑖𝑝𝑑𝑎𝑡𝑎𝑏𝑒𝑓𝑜𝑟𝑒𝑟𝑒𝑠𝑡𝑜𝑟𝑖𝑛𝑔 − 𝑟,− − 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑅𝑒𝑝𝑙𝑎𝑐𝑒𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔𝑓𝑖𝑙𝑒𝑠 −
−𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠ℎ𝑜𝑤𝑝𝑟𝑜𝑔𝑟𝑎𝑚′𝑠𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑛𝑢𝑚𝑏𝑒𝑟𝑎𝑛𝑑𝑒𝑥𝑖𝑡 − 𝑣0, 1, 2, 3,− − 𝑣𝑒𝑟𝑏𝑜𝑠𝑖𝑡𝑦0, 1, 2, 3𝑉 𝑒𝑟𝑏𝑜𝑠𝑖𝑡𝑦𝑙𝑒𝑣𝑒𝑙; 0 =
𝑚𝑖𝑛𝑖𝑚𝑎𝑙𝑜𝑢𝑡𝑝𝑢𝑡, 1 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑜𝑢𝑡𝑝𝑢𝑡, 2 = 𝑣𝑒𝑟𝑏𝑜𝑠𝑒𝑜𝑢𝑡𝑝𝑢𝑡, 3 = 𝑣𝑒𝑟𝑦𝑣𝑒𝑟𝑏𝑜𝑠𝑒𝑜𝑢𝑡𝑝𝑢𝑡 −
−𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠𝑆𝐸𝑇𝑇𝐼𝑁𝐺𝑆𝑇ℎ𝑒𝑃𝑦𝑡ℎ𝑜𝑛𝑝𝑎𝑡ℎ𝑡𝑜𝑎𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠𝑚𝑜𝑑𝑢𝑙𝑒, 𝑒.𝑔.”𝑚𝑦𝑝𝑟𝑜𝑗𝑒𝑐𝑡.𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠.𝑚𝑎𝑖𝑛”.𝐼𝑓𝑡ℎ𝑖𝑠𝑖𝑠𝑛′𝑡𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑, 𝑡ℎ𝑒𝐷𝐽𝐴𝑁𝐺𝑂𝑆𝐸𝑇𝑇𝐼𝑁𝐺𝑆𝑀𝑂𝐷𝑈𝐿𝐸𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑤𝑖𝑙𝑙𝑏𝑒𝑢𝑠𝑒𝑑.−
−𝑝𝑦𝑡ℎ𝑜𝑛𝑝𝑎𝑡ℎ𝑃𝑌 𝑇𝐻𝑂𝑁𝑃𝐴𝑇𝐻𝐴𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦𝑡𝑜𝑎𝑑𝑑𝑡𝑜𝑡ℎ𝑒𝑃𝑦𝑡ℎ𝑜𝑛𝑝𝑎𝑡ℎ, 𝑒.𝑔.”/ℎ𝑜𝑚𝑒/𝑑𝑗𝑎𝑛𝑔𝑜𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠/𝑚𝑦𝑝𝑟𝑜𝑗𝑒𝑐𝑡”.−
−𝑡𝑟𝑎𝑐𝑒𝑏𝑎𝑐𝑘𝑅𝑎𝑖𝑠𝑒𝑜𝑛𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝐸𝑟𝑟𝑜𝑟𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑠−−𝑛𝑜−𝑐𝑜𝑙𝑜𝑟𝐷𝑜𝑛′𝑡𝑐𝑜𝑙𝑜𝑟𝑖𝑧𝑒𝑡ℎ𝑒𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑜𝑢𝑡𝑝𝑢𝑡.−−𝑓𝑜𝑟𝑐𝑒−
𝑐𝑜𝑙𝑜𝑟𝐹𝑜𝑟𝑐𝑒𝑐𝑜𝑙𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑜𝑓𝑡ℎ𝑒𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑜𝑢𝑡𝑝𝑢𝑡.−−𝑠𝑘𝑖𝑝− 𝑐ℎ𝑒𝑐𝑘𝑠𝑆𝑘𝑖𝑝𝑠𝑦𝑠𝑡𝑒𝑚𝑐ℎ𝑒𝑐𝑘𝑠.

5.5 listbackups

This command helps to list backups filtered by type ('media' or 'db'), by compression or encryption.

5.4. mediarestore 23

django-dbbackup Documentation, Release 4.0.2

5.5.1 Help

usage: manage.py listbackups [-h] [–noinput] [-q] [-d DATABASE] [-z] [-Z] [-e] [-E] [-c CONTENT𝑇𝑌 𝑃𝐸][− −
𝑣𝑒𝑟𝑠𝑖𝑜𝑛][−𝑣0, 1, 2, 3][−− 𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠𝑆𝐸𝑇𝑇𝐼𝑁𝐺𝑆][−− 𝑝𝑦𝑡ℎ𝑜𝑛𝑝𝑎𝑡ℎ𝑃𝑌 𝑇𝐻𝑂𝑁𝑃𝐴𝑇𝐻][−− 𝑡𝑟𝑎𝑐𝑒𝑏𝑎𝑐𝑘][−−𝑛𝑜−
𝑐𝑜𝑙𝑜𝑟][−− 𝑓𝑜𝑟𝑐𝑒− 𝑐𝑜𝑙𝑜𝑟][−− 𝑠𝑘𝑖𝑝− 𝑐ℎ𝑒𝑐𝑘𝑠]

optional arguments: -h, –help show this help message and exit –noinput Tells Django to NOT prompt
the user for input of any kind. -q, –quiet Tells Django to NOT output other text than errors. -d
DATABASE, –database DATABASE Filter by database name -z, –compressed Exclude non-compressed -Z,
–not-compressed Exclude compressed -e, –encrypted Exclude non-encrypted -E, –not-encrypted Exclude en-
crypted -c CONTENT𝑇𝑌 𝑃𝐸,− − 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 − 𝑡𝑦𝑝𝑒𝐶𝑂𝑁𝑇𝐸𝑁𝑇𝑇𝑌 𝑃𝐸𝐹𝑖𝑙𝑡𝑒𝑟𝑏𝑦𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑡𝑦𝑝𝑒′𝑑𝑏′𝑜𝑟′𝑚𝑒𝑑𝑖𝑎′ −
−𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑠ℎ𝑜𝑤𝑝𝑟𝑜𝑔𝑟𝑎𝑚′𝑠𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑛𝑢𝑚𝑏𝑒𝑟𝑎𝑛𝑑𝑒𝑥𝑖𝑡 − 𝑣0, 1, 2, 3,− − 𝑣𝑒𝑟𝑏𝑜𝑠𝑖𝑡𝑦0, 1, 2, 3𝑉 𝑒𝑟𝑏𝑜𝑠𝑖𝑡𝑦𝑙𝑒𝑣𝑒𝑙; 0 =
𝑚𝑖𝑛𝑖𝑚𝑎𝑙𝑜𝑢𝑡𝑝𝑢𝑡, 1 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑜𝑢𝑡𝑝𝑢𝑡, 2 = 𝑣𝑒𝑟𝑏𝑜𝑠𝑒𝑜𝑢𝑡𝑝𝑢𝑡, 3 = 𝑣𝑒𝑟𝑦𝑣𝑒𝑟𝑏𝑜𝑠𝑒𝑜𝑢𝑡𝑝𝑢𝑡 −
−𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠𝑆𝐸𝑇𝑇𝐼𝑁𝐺𝑆𝑇ℎ𝑒𝑃𝑦𝑡ℎ𝑜𝑛𝑝𝑎𝑡ℎ𝑡𝑜𝑎𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠𝑚𝑜𝑑𝑢𝑙𝑒, 𝑒.𝑔.”𝑚𝑦𝑝𝑟𝑜𝑗𝑒𝑐𝑡.𝑠𝑒𝑡𝑡𝑖𝑛𝑔𝑠.𝑚𝑎𝑖𝑛”.𝐼𝑓𝑡ℎ𝑖𝑠𝑖𝑠𝑛′𝑡𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑, 𝑡ℎ𝑒𝐷𝐽𝐴𝑁𝐺𝑂𝑆𝐸𝑇𝑇𝐼𝑁𝐺𝑆𝑀𝑂𝐷𝑈𝐿𝐸𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑤𝑖𝑙𝑙𝑏𝑒𝑢𝑠𝑒𝑑.−
−𝑝𝑦𝑡ℎ𝑜𝑛𝑝𝑎𝑡ℎ𝑃𝑌 𝑇𝐻𝑂𝑁𝑃𝐴𝑇𝐻𝐴𝑑𝑖𝑟𝑒𝑐𝑡𝑜𝑟𝑦𝑡𝑜𝑎𝑑𝑑𝑡𝑜𝑡ℎ𝑒𝑃𝑦𝑡ℎ𝑜𝑛𝑝𝑎𝑡ℎ, 𝑒.𝑔.”/ℎ𝑜𝑚𝑒/𝑑𝑗𝑎𝑛𝑔𝑜𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠/𝑚𝑦𝑝𝑟𝑜𝑗𝑒𝑐𝑡”.−
−𝑡𝑟𝑎𝑐𝑒𝑏𝑎𝑐𝑘𝑅𝑎𝑖𝑠𝑒𝑜𝑛𝐶𝑜𝑚𝑚𝑎𝑛𝑑𝐸𝑟𝑟𝑜𝑟𝑒𝑥𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑠−−𝑛𝑜−𝑐𝑜𝑙𝑜𝑟𝐷𝑜𝑛′𝑡𝑐𝑜𝑙𝑜𝑟𝑖𝑧𝑒𝑡ℎ𝑒𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑜𝑢𝑡𝑝𝑢𝑡.−−𝑓𝑜𝑟𝑐𝑒−
𝑐𝑜𝑙𝑜𝑟𝐹𝑜𝑟𝑐𝑒𝑐𝑜𝑙𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑜𝑓𝑡ℎ𝑒𝑐𝑜𝑚𝑚𝑎𝑛𝑑𝑜𝑢𝑡𝑝𝑢𝑡.−−𝑠𝑘𝑖𝑝− 𝑐ℎ𝑒𝑐𝑘𝑠𝑆𝑘𝑖𝑝𝑠𝑦𝑠𝑡𝑒𝑚𝑐ℎ𝑒𝑐𝑘𝑠.

24 Chapter 5. Commands

CHAPTER 6

Integration tutorials

Note: If you have a custom and/or interesting way of use DBBackup, do not hesitate to make a pull request.

6.1 Django-cron

Example of cron job with django-cron with file system storage:

import os
from django.core import management
from django.conf import settings
from django_cron import CronJobBase, Schedule

class Backup(CronJobBase):
RUN_AT_TIMES = ['6:00', '18:00']
schedule = Schedule(run_at_times=RUN_AT_TIMES)
code = 'my_app.Backup'

def do(self):
management.call_command('dbbackup')

25

https://github.com/Tivix/django-cron

django-dbbackup Documentation, Release 4.0.2

26 Chapter 6. Integration tutorials

CHAPTER 7

Upgrade from 2.5.x

7.1 Settings

The following settings are now useless, you can remove them:

• DBBACKUP_BACKUP_ENVIRONMENT: Must be set in CONNECTORS['dbname']['env']

• DBBACKUP_RESTORE_ENVIRONMENT: Same as BACKUP_ENVIRONMENT

• DBBACKUP_FORCE_ENGINE

• DBBACKUP_READ_FILE

• DBBACKUP_WRITE_FILE

• DBBACKUP_BACKUP_DIRECTORY: Was used by Filesystem storage, use location parameter

• DBBACKUP_SQLITE_BACKUP_COMMANDS: Was used by SQLite database, use CONNECTORS’s parameters.

• DBBACKUP_SQLITE_RESTORE_COMMANDS: Same as SQLITE_BACKUP_COMMANDS

• DBBACKUP_MYSQL_BACKUP_COMMANDS: Same as SQLITE_BACKUP_COMMANDS but for MySQL

• DBBACKUP_MYSQL_RESTORE_COMMANDS: Same as MYSQL_BACKUP_COMMANDS

• DBBACKUP_POSTGRESQL_BACKUP_COMMANDS Same as MYSQL_BACKUP_COMMANDS but for Post-
greSQL

• DBBACKUP_POSTGRESQL_RESTORE_COMMANDS: Same as DBBACKUP_POSTGRESQL_BACKUP_COMMANDS:
Was used to activate PostGIS, use PgDumpGisConnector connector to enable this option

• DBBACKUP_POSTGRESQL_RESTORE_SINGLE_TRANSACTION: Must be set in
CONNTECTORS['dbname']['single_transaction']

• DBBACKUP_BUILTIN_STORAGE

27

django-dbbackup Documentation, Release 4.0.2

7.2 Commands

7.2.1 dbrestore

--backup-extension has been removed, DBBackup should automatically know the appropriate file.

Listing from this command, --list, has been removed in favor of listbackups command.

7.2.2 mediabackup

mediabackup’s --no-compress option has been replaced by --compress to maintain consistency with other
commands.

This command can now backup remote storage, not only the local filesystem DBBACKUP_BACKUP_DIRECTORY.

7.2.3 mediarestore

You are now able to restore your media files backups. Unfortunately you’ll not be able to restore backup files from
previous versions of dbbackup.

7.3 Database connector

We made a total refactoring of DBCommands system. It is now easier to use, configure and implement a custom
connector.

All database configuration for backups are defined in settings DBBACKUP_CONNECTORS. By default, the
DATABASES parameters are used but can be overridden in this new constant.

This dictionary stores configuration about how backups are made, the path of the backup command (/bin/
mysqldump), add a suffix or a prefix

to the command line, environment variable, etc.

The system has been kept pretty simple and can detect alone how to backup your DB. If it can’t just submit to us your
Django DB Engine and we’ll try to fix it.

7.3.1 SQLite

Previously a backup was made by copying the database file. Now you have the choice between making a raw snapshot
or making a real SQL dump. It can be useful to exclude tables or to not overwrite data.

If you want to restore your old backups choose dbbackup.db.sqlite.SqliteCPConnector.

7.4 Storage engine

All storage engines has been removed from DBBackup except the basic filesystem storage. The project now uses
Django storages as an intermediary driver.

settings.DBBACKUP_STORAGE must now be a full path to a Django storage, for example 'django.
core.files.storage.FileSystemStorage'. settings.DBBACKUP_STORAGE_OPTIONS maintains
its function of containing the options of the storage.

28 Chapter 7. Upgrade from 2.5.x

django-dbbackup Documentation, Release 4.0.2

If you were using a storage backend that has been removed, don’t worry, we will ensure you have a solution by testing
and writing an equivalent using Django-Storages.

7.4. Storage engine 29

django-dbbackup Documentation, Release 4.0.2

30 Chapter 7. Upgrade from 2.5.x

CHAPTER 8

Contributing guide

Dbbackup is a free license software where all help are welcomed. This documentation aims to help users or developers
to bring their contributions to this project.

8.1 Submit a bug, issue or enhancement

All communication are made with GitHub issues. Do not hesitate to open a issue if:

• You have an improvement idea

• You found a bug

• You’ve got a question

• More generally something seems wrong for you

8.2 Make a patch

We use GitHub pull requests to manage all patches. For a better handling of requests we advise you to:

1. Fork the project and make a new branch

2. Make your changes with tests if possible and documentation if needed

3. Push changes to your fork repository and test it with Travis

4. If it succeeds, open a pull request

5. Bother us until we give you an answer

Note: We advise you to launch it with Python 2 & 3 before push and try it in Travis. DBBackup uses a lot of file
operations, so breaks between Python versions are easy.

31

https://github.com/jazzband/django-dbbackup/issues
https://github.com/jazzband/django-dbbackup/pulls

django-dbbackup Documentation, Release 4.0.2

8.3 Test environment

We provides tools to help developers to quickly test and develop DBBackup. There are 2 majors scripts:

• runtests.py: Unit tests launcher and equivalent of manage.py in the test project.

• functional.sh: Shell script that use runtests.py to create a database backup and restore it, the same
with media, and test if they are restored.

8.3.1 runtests.py

You can test code on your local machine with the runtests.py script:

python runtests.py

But if argument are provided, it acts as manage.py so you can simply launch some other command to test deeply,
example:

Enter in Python shell
python runtests.py shell

Launch a particular test module
python runtests.py test dbbackup.tests.test_utils

All tests are stored in dbbackup.tests.

8.3.2 functional.sh

It tests at a higher level if backup/restore mechanism is alright. It becomes powerful because of the configuration you
can give to it. See the next chapter for explanation about it.

8.3.3 Configuration

DBBackup contains a test Django project at dbbackup.tests and its settings module. This configuration
takes care of the following environment variables:

DB_ENGINE - Default: django.db.backends.sqlite3

Databank-Engine to use. See in django.db.backends for default backends.

DB_NAME - Default: :memory:

Database name. Should be set correctly if a db other than sqlite3 is used.

DB_USER - Default: None

DB Username

DB_PASSWORD - Default: None

DB Password

DB_HOST - Default: None

DB Host

MEDIA_ROOT - Default= tempfile.mkdtemp()

Django’s MEDIA_ROOT, useful if you want test media backup from filesystem

32 Chapter 8. Contributing guide

django-dbbackup Documentation, Release 4.0.2

STORAGE - Default: dbbackup.tests.utils.FakeStorage

Storage used for backups

STORAGE_OPTIONS

Options for instantiating the chosen storage. It must be formatted as "key1=foo,key2=bar" and will be converted
into a dict.

8.4 Online CI

We use Travis which tests Dbbackup with a matrix of components’ versions: Several versions of Django and several
versions of Python including 2, 3 and PyPy.

Code coverage is ensured with Coveralls and the project has not yet reached a minimum coverage limit.

Code health is checked with Landscape

8.4. Online CI 33

https://travis-ci.org/jazzband/django-dbbackup
https://travis-ci.org/jazzband/django-dbbackup
https://coveralls.io/github/jazzband/django-dbbackup
https://coveralls.io/github/jazzband/django-dbbackup?branch=master
https://landscape.io/github/jazzband/django-dbbackup/

django-dbbackup Documentation, Release 4.0.2

34 Chapter 8. Contributing guide

CHAPTER 9

Changelog

9.1 4.0.0b0 (2021-12-19)

• Fix RemovedInDjango41Warning related to default_app_config #413

• Add authentication database support for MongoDB #379

• Remove six dependency #371

• Explicitly support Python 3.6+. #408

• Drop support for end of life Django versions. Currently support 2.2, 3.2, 4.0. #408

• Replace ugettext_lazy with gettext_lazy #342

• Changed logging settings from settings.py to late init #332

• Fix authentication error when postgres is password protected #361

• Use exclude-table-data instead of exclude-table #363

• Add support for exclude tables data in the command interface #375

• Move author and version information into setup.py to allow building package in isolated environment (e.g. with
the build package). #414

• Documentation fixes #341 #333 #349 #348 #337 #411

9.2 3.3.0 (2020-04-14)

• Documentation fixes #341 #333 #328 #320 #305 #303 #302 #298 #281 #266 #349 #348 #337

• “output-filename” in mediabackup command #324

• Fixes for test infrastructure and mongodb support #318

• sqlite3: don’t throw warnings if table already exists #317

35

https://github.com/jazzband/django-dbbackup/pull/413
https://github.com/jazzband/django-dbbackup/pull/379
https://github.com/jazzband/django-dbbackup/pull/371
https://github.com/jazzband/django-dbbackup/pull/408
https://github.com/jazzband/django-dbbackup/pull/408
https://github.com/jazzband/django-dbbackup/pull/342
https://github.com/jazzband/django-dbbackup/pull/332
https://github.com/jazzband/django-dbbackup/pull/361
https://github.com/jazzband/django-dbbackup/pull/363
https://github.com/jazzband/django-dbbackup/pull/375
https://github.com/jazzband/django-dbbackup/pull/414
https://github.com/jazzband/django-dbbackup/pull/341
https://github.com/jazzband/django-dbbackup/pull/333
https://github.com/jazzband/django-dbbackup/pull/349
https://github.com/jazzband/django-dbbackup/pull/348
https://github.com/jazzband/django-dbbackup/pull/337
https://github.com/jazzband/django-dbbackup/pull/411
https://github.com/jazzband/django-dbbackup/pull/341
https://github.com/jazzband/django-dbbackup/pull/333
https://github.com/jazzband/django-dbbackup/pull/328
https://github.com/jazzband/django-dbbackup/pull/320
https://github.com/jazzband/django-dbbackup/pull/305
https://github.com/jazzband/django-dbbackup/pull/303
https://github.com/jazzband/django-dbbackup/pull/302
https://github.com/jazzband/django-dbbackup/pull/298
https://github.com/jazzband/django-dbbackup/pull/281
https://github.com/jazzband/django-dbbackup/pull/266
https://github.com/jazzband/django-dbbackup/pull/349
https://github.com/jazzband/django-dbbackup/pull/348
https://github.com/jazzband/django-dbbackup/pull/337
https://github.com/jazzband/django-dbbackup/pull/324
https://github.com/jazzband/django-dbbackup/pull/318
https://github.com/jazzband/django-dbbackup/pull/317

django-dbbackup Documentation, Release 4.0.2

• Fixes for django3 and updated travis (and File handling) #316

• Restoring from FTP #313

• Fixes to run dbbackup management command in Postgres for non-latin Windows. #273

• Apply changes from pull request 244; Update to include sftp storage #280

• Quick fix for proper selection of DB name to restore #260

36 Chapter 9. Changelog

https://github.com/jazzband/django-dbbackup/pull/316
https://github.com/jazzband/django-dbbackup/pull/313
https://github.com/jazzband/django-dbbackup/pull/273
https://github.com/jazzband/django-dbbackup/pull/280
https://github.com/jazzband/django-dbbackup/pull/260

CHAPTER 10

Compatibility

As we want to ensure a lot of platforms will be able to save data before upgrading, Django-DBBackup supports PyPy,
3.2 to 3.5 and Django greater than 2.2

37

django-dbbackup Documentation, Release 4.0.2

38 Chapter 10. Compatibility

CHAPTER 11

Other Resources

• GitHub repository

• PyPI project

• Read The Docs

• GitHub issues

• GitHub pull requests

• Coveralls

39

https://github.com/jazzband/django-dbbackup
https://pypi.python.org/pypi/django-dbbackup/
https://django-dbbackup.readthedocs.org/
https://github.com/jazzband/django-dbbackup/issues
https://github.com/jazzband/django-dbbackup/pulls
https://coveralls.io/github/jazzband/django-dbbackup

django-dbbackup Documentation, Release 4.0.2

40 Chapter 11. Other Resources

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

41

	Installation
	Configuration
	Database settings
	Storage settings
	Commands
	Integration tutorials
	Upgrade from 2.5.x
	Contributing guide
	Changelog
	Compatibility
	Other Resources
	Indices and tables

